commit
192cc7c739
@ -0,0 +1,160 @@ |
|||||||
|
package net.pokeranalytics.android.calculus.optimalduration |
||||||
|
|
||||||
|
import io.realm.Realm |
||||||
|
import net.pokeranalytics.android.calculus.Calculator |
||||||
|
import net.pokeranalytics.android.calculus.Stat |
||||||
|
import net.pokeranalytics.android.model.filter.Query |
||||||
|
import net.pokeranalytics.android.model.filter.QueryCondition |
||||||
|
import net.pokeranalytics.android.model.realm.Session |
||||||
|
import org.apache.commons.math3.fitting.PolynomialCurveFitter |
||||||
|
import org.apache.commons.math3.fitting.WeightedObservedPoints |
||||||
|
import java.util.* |
||||||
|
import kotlin.math.pow |
||||||
|
import kotlin.math.round |
||||||
|
|
||||||
|
/*** |
||||||
|
* This class attempts to find the optimal game duration, |
||||||
|
* meaning the duration where the player will maximize its results, based on his history. |
||||||
|
* The results stands for cash game, and are separated between live and online. |
||||||
|
* Various reasons can prevent the algorithm to find a duration, see below. |
||||||
|
*/ |
||||||
|
class CashGameOptimalDurationCalculator { |
||||||
|
|
||||||
|
companion object { |
||||||
|
|
||||||
|
private const val bucket = 60 * 60 * 1000L // the duration of bucket |
||||||
|
private const val bucketInterval = 4 // number of duration tests inside the bucket to find the best duration |
||||||
|
private const val minimumValidityCount = 10 // the number of sessions inside a bucket to start having a reasonable average |
||||||
|
private const val intervalValidity = 3 // the minimum number of unit between the shortest & longest valid buckets |
||||||
|
private const val polynomialDegree = 7 // the degree of the computed polynomial |
||||||
|
|
||||||
|
/*** |
||||||
|
* Starts the calculation |
||||||
|
* [isLive] is a boolean to indicate if we're looking at live or online games |
||||||
|
* return a duration or null if it could not be computed |
||||||
|
*/ |
||||||
|
fun start(isLive: Boolean): Double? { |
||||||
|
|
||||||
|
val realm = Realm.getDefaultInstance() |
||||||
|
|
||||||
|
val query = Query().add(QueryCondition.IsCash) // cash game |
||||||
|
query.add(if (isLive) { QueryCondition.IsLive } else { QueryCondition.IsOnline }) // live / online |
||||||
|
query.add(QueryCondition.EndDateNotNull) // ended |
||||||
|
query.add(QueryCondition.BigBlindNotNull) // has BB value |
||||||
|
|
||||||
|
val sessions = query.queryWith(realm.where(Session::class.java)).findAll() |
||||||
|
val sessionsByDuration = sessions.groupBy { |
||||||
|
round((it.netDuration / bucket).toDouble()) * bucket |
||||||
|
} |
||||||
|
|
||||||
|
// define validity interval |
||||||
|
var start: Double? = null |
||||||
|
var end: Double? = null |
||||||
|
var validBuckets = 0 |
||||||
|
for (key in sessionsByDuration.keys.sorted()) { |
||||||
|
val sessionCount = sessionsByDuration[key]?.size ?: 0 |
||||||
|
if (start == null && sessionCount >= minimumValidityCount) { |
||||||
|
start = key |
||||||
|
} |
||||||
|
if (sessionCount >= minimumValidityCount) { |
||||||
|
end = key |
||||||
|
validBuckets++ |
||||||
|
} |
||||||
|
} |
||||||
|
if (!(start != null && end != null && (end - start) >= intervalValidity)) { |
||||||
|
return null |
||||||
|
} |
||||||
|
|
||||||
|
// define if we have enough sessions |
||||||
|
if (sessions.size < 50) { |
||||||
|
return null |
||||||
|
} |
||||||
|
|
||||||
|
val options = Calculator.Options() |
||||||
|
options.query = query |
||||||
|
val report = Calculator.computeStats(realm, options) |
||||||
|
val stdBB = report.results.firstOrNull()?.computedStat(Stat.STANDARD_DEVIATION_BB)?.value |
||||||
|
|
||||||
|
val p = polynomialRegression(sessions, stdBB) |
||||||
|
|
||||||
|
var bestAverage = 0.0 |
||||||
|
var bestHourlyRate = 0.0 |
||||||
|
var bestDuration = 0.0 |
||||||
|
var maxDuration = 0.0 |
||||||
|
|
||||||
|
val keys = sessionsByDuration.keys.filter { it >= start && it <= end }.sorted() |
||||||
|
|
||||||
|
for (key in keys) { |
||||||
|
|
||||||
|
val sessionCount = sessionsByDuration[key]?.size ?: 0 |
||||||
|
|
||||||
|
if (sessionCount < minimumValidityCount / 2) continue // if too few sessions we don't consider the duration valid |
||||||
|
|
||||||
|
for (i in 0 until bucketInterval) { |
||||||
|
|
||||||
|
val duration = key + i * bucket / bucketInterval |
||||||
|
|
||||||
|
val averageResult = getBB(duration, p) |
||||||
|
val hourly = averageResult / duration |
||||||
|
if (averageResult > bestAverage && hourly > 2 / 3 * bestHourlyRate) { |
||||||
|
bestAverage = averageResult |
||||||
|
bestDuration = duration |
||||||
|
} |
||||||
|
|
||||||
|
if (duration > 0 && hourly > bestHourlyRate) { |
||||||
|
bestHourlyRate = hourly |
||||||
|
} |
||||||
|
if (duration > maxDuration){ |
||||||
|
maxDuration = duration |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
if (bestDuration > 0.0) { |
||||||
|
return bestDuration |
||||||
|
} |
||||||
|
|
||||||
|
realm.close() |
||||||
|
return null |
||||||
|
} |
||||||
|
|
||||||
|
private fun getBB(netDuration: Double, polynomial: DoubleArray): Double { |
||||||
|
var y = 0.0 |
||||||
|
for (i in polynomial.indices) { |
||||||
|
y += polynomial[i] * netDuration.pow(i) |
||||||
|
} |
||||||
|
return y |
||||||
|
} |
||||||
|
|
||||||
|
private fun polynomialRegression(sessions: List<Session>, bbStandardDeviation: Double?): DoubleArray { |
||||||
|
|
||||||
|
val stdBB = bbStandardDeviation ?: Double.MAX_VALUE |
||||||
|
|
||||||
|
val points = WeightedObservedPoints() |
||||||
|
val now = Date().time |
||||||
|
|
||||||
|
sessions.forEach { |
||||||
|
var weight = 5.0 |
||||||
|
|
||||||
|
val endTime = it.endDate?.time ?: 0L |
||||||
|
|
||||||
|
val age = now - endTime |
||||||
|
if (age > 2 * 365 * 24 * 3600 * 1000L) { // if more than 2 years loses 1 point |
||||||
|
weight -= 1.0 |
||||||
|
} |
||||||
|
if (it.bbNet > 2 * stdBB) { // if very big result loses 3 points |
||||||
|
weight -= 3.0 |
||||||
|
} |
||||||
|
|
||||||
|
points.add(weight, it.netDuration.toDouble(), it.bbNet) |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
// polynomial of 7 degree, same as iOS |
||||||
|
return PolynomialCurveFitter.create(polynomialDegree).fit(points.toList()) |
||||||
|
} |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
} |
||||||
Loading…
Reference in new issue